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Abstract

A hidden Markov model (HMM) encompasses a large class of stochastic process models and has been successfully applied
to a number of scientific and engineering problems, including speech and other pattern recognition problems, and DNA
sequence comparison. A hidden semi-Markov model (HSMM) is an extension of HMM, designed to remove the constant
or geometric distributions of the state durations assumed in HMM. A larger class of practical problems can be appropriately
modeled in the setting of HSMM. A major restriction is found, however, in both conventional HMM and HSMM, i.e., it is
generally assumed that there exists at least one observation associated with every state that the hidden Markov chain takes on.
We will remove this assumption and consider the following situations: (i) observation data may be missing for some intervals;
and (ii) there are multiple observation streams that are not necessarily synchronous to each other and may have different
“emission distributions” for the same state. We propose a new and computationally efficient forward—backward algorithm for
HSMM with missing observations and multiple observation sequences. The required computational amount for the forward
and backward variables is reduced to O(D), where D is the maximum allowed duration in a state. Finally, we will apply the
extended HSMM to estimate the mobility model parameters for the Internet service provisioning in wireless networks.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hidden Markov model (HMM); HMM with explicit duration; Hidden semi-Markov Model (HSMM); Missing data; Multiple
observations; Ferguson algorithm; Forward—backward algorithm; Expectation—maximization (EM) algorithm; Maximum likelihood (ML)
estimation; Maximum a posteriori probability (MAP) estimation; Mobility modeling; Wireless Internet service

1. Introduction (HSMM) is an extension of HMM designed to al-

low general (i.e., non-geometric or non-exponential )

The hidden Markov model (HMM) technique has distributions for the state durations [8]. Some authors

become one of the most successful techniques in the
field of estimation and recognition (e.g., speech recog-
nition [2,20,15], decoding in digital communications
[1]). In the conventional HMM approach the state du-
ration is either of a unit interval or implicitly assumed
to be geometrically distributed to make the underly-
ing process Markovian. A hidden semi-Markov model
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[8,17,18] use terms such as “HMM with variable du-
ration” and “HMM with explicit duration” to mean
what we call in this paper an HSMM. To the best of
our knowledge Ferguson [8] is the first that investi-
gated the HSMM.

In the ordinary discrete-time HMM and HSMM,
an observable output is “emitted” at every discrete
time, even while the hidden Markov state remains un-
changed. In some applications, however, observations
may not necessarily be made frequently enough for
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one reason or another. In other words, clocks for ob-
servations may be coarser than the ones for the hid-
den Markov chain and its associated output emissions.
In such cases, estimation of the state sequence and/or
model parameters have to be made based on insuffi-
cient observations.

Another assumption commonly made in the conven-
tional HMM and HSMM s that only one observable
is associated with the hidden state. In some other ap-
plications, multiple observations may be available as-
sociated with the hidden state sequence. Furthermore,
these multiple observation sequences may not be syn-
chronous to each other. An example is found in our
application discussed in Section 5, where geo-location
measurement data and Web content request traffic are
two observation sequences associated with a mobile
wireless user, whose behavior is characterized as a
hidden Markov chain. The two observation sequences
are not synchronized in time. Therefore, multiple ob-
servations of such time cannot be represented as a
single stream of vector-valued observations. Thus, we
wish to extend the traditional “single observation se-
quence” model to a “multiple observation sequences”
model, and develop the corresponding optimal estima-
tion algorithm.

The HMM and HSMM have been well studied,
but there are few papers in the literature that address
estimation procedures for missing data. An exception
is Bahl et al. [2], who considered an HMM in which
observations associated with state transitions are
possibly missing. They introduced a notion of “null
observation”, which is treated as a special output of
a state transition, and the conventional algorithms
for HMM are applied to a sequence that contains
such null observations. Their approach, however,
is not applicable to our HSMM with missing data
because of its inherent Markovian assumption as-
sociated with the null observations. In the bioin-
formatics field, a generalization of HMM regarding
two observation sequences, called “pair HMMSs” or
“profile HMM” [6] has been developed for model-
ing aligned pairs of DNA sequences, or sequence
families based on multiple alignments. In this for-
mulation, the state sequence is associated with the
alignment of the gapped sequences, instead of the
individual sequences. In contrast to this pair HMM,
our multiple observation model deals with a com-
mon hidden Markov state sequence that is associated

with each of the observation sequences that exist in
parallel.

Among the conventional HMM approaches, the
Viterbi algorithm [9] and the Baum—Welch algorithm
[3] are perhaps the best known and most frequently
used estimation or decoding algorithms. The BCJR
algorithm devised by Bahl et al. [1] can be viewed
as an extension of the Baum—Welch algorithm to
deal with situations where the observable sequence
is an output of a noisy channel whose input is the
output produced by a state sequence. The conven-
tional algorithm for HSMM proposed by Ferguson
[8] may be computationally too complex to be of
practical use in some applications, since it requires
computation steps proportional to D?, where D is the
maximum allowable duration of any state. An alter-
native approach is to limit ourselves to “parametric
HSMM” in which the duration distribution is char-
acterized by parametric distributions such as Gaus-
sian, Poisson or Gamma distributions. The duration
distribution can also be combined with the state tran-
sition probabilities [22,24,5,21] and the observation
probabilities [19].

The remainder of the present paper is organized
as follows. Section 2 introduces our HSMM and six
types of observation patterns. Section 3 develops new
estimation algorithms regarding the missing observa-
tions. Section 4 describes our estimation algorithm for
two observation sequences. We use the EM (estima-
tion/maximization) algorithm to prove that our esti-
mation algorithm with missing observations and two
observation sequences is a maximum likelihood esti-
mation solution. Section 5 applies the above results
to mobility tracking in wireless Internet services pro-
visioning. Section 6 presents some simulation results
and Section 7 concludes the paper.

2. The models

Consider a Markov chain with M states that are la-
beledas {1,2,..., M}, in which the probability of tran-
sition from state m’ to state m is denoted a,,,,, where
m,m'=1,2,...,M, and the initial state probability dis-
tribution is given by {7, }. The Markov state is called
a “hidden” state, when the state is not directly observ-
able. If some output sequence that is probabilistically
associated with the underlying hidden Markov chain
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is observable, then this “doubly stochastic process” is
referred to as a “hidden Markov model” or an HMM.

Let s, denote the state that the system takes at time ¢,
where t =1,2,...,T. We denote the state sequence as
{s;}, but when we wish to be explicit about the inter-
val, we adopt the notation s°, meaning {s,:a < t < b}.
Similarly, let o, denote the observable output at time ¢
associated with state s, and let b,,(0, ) be the probabil-
ity of observing o,, given s, =m. We assume the “con-
ditional independence” of outputs so that b,,(o2) =
Hf:a bu(0;), where o” represents the observation se-
quence from time a to time b. If, for instance, {o;}
is a function of {s;} observed through a channel with
additive white noise, the above simple product form
holds.

In this paper, we assume the discrete-time model,
unless stated otherwise. Thus, the duration of a given
state m is a discrete random variable. In the conven-
tional HMM we can treat only two cases regarding
the state duration. It is either one time unit long or
is geometrically distributed. In either case the state
sequence {s;} becomes a Markov process, since the
current state s, depends on its past only through
the most recent state s,_;. We wish to allow a gen-
eral distribution p,(d) for the state duration, for
d < D < oo, for all m. With this general distribution
pm(d), the state sequence {s;} is no longer a Markov
process, but is a semi-Markov process, hence the term
HSMM.

Since we assume that the underlying semi-Markov
process is not directly observable, the state sequence
sT and the model parameters such as p,,(d) must be
estimated from the observable output sequence {o,}.
We classify observation patterns into the following six

types:

(a) Full observation—The outputs {o, } are fully ob-
served with no missing observations. This corresponds
to the conventional case that has been well studied.

(b) Deterministic observation—The outputs {o,}
are observed only at predetermined epochs. Regular
or periodic sampling is a typical example. The rest of
{0;} will be missed, and such portion will be consid-
erable, if the sampling is done infrequently. The num-
ber of hidden states that may be missed between any
adjacent samples varies and is generally unknown.

(¢) Random observation—The outputs {o,} are ob-
served at randomly chosen instants. Such observation

HSMM
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Fig. 1. An example of multiple observation sequences.

pattern may apply, when the measurement is costly
or we are not interested in keeping track of state
transitions so closely. In this case, some outputs may
become “null” observations randomly.

(d) State-dependent observation—Some of the out-
puts {o;} may become “null” observations, but the
probability that a given o, becomes such depends on
the state s;.

(e) Output-dependent observation—Some of the
outputs {o,} may become “null” observations, but
the probability that a given o, becomes such depends
on the output value o, itself. For instance, when the
output is too weak (in comparison with noise) at time
t, such output may not be observed.

(f) Multiple observation sequences—Multiple ob-
servation sequences are associated with the hidden
state sequence, and these observations may not be syn-
chronized to each other.

In Fig. 1 we present a special case of observation
type (f) defined above. We assume two sequences
{0,} and {q,} are available as the outputs of an HSMM
state sequence. The conditional probability that o, ap-
pears when the state is at m is given by b,(0,) and
the corresponding conditional probability for the sec-
ond output is given by ¢, (g,). If we introduce some
random delay t between the two output sequences,
these two sequences are no longer synchronized. The
symbol ¢, represents the missed observation (i.e., null
observation) of the output at time ¢.

Because the observation may not necessarily be
made at every time interval, we denote the set of the
observation time instants G = {t,, %, %, .., 1, }, where
1 <1t,t, <T. Then we can denote the observation
sequence

0t ={osa <t <b, and t€ G}. (1)

In Fig. 2(a) and (b), we give an illustrative case,
where M =8 and T = 6. State 2 lasts three time units,
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Fig. 2. (a) HSMM with M = 8 hidden states; (b) observable {o;}, with T =6.

i.e., t=2,3,4. The observations o3 and o5 are missed,
hence G = {11 =1,6=2b=4,4=T= 6}

Now we are in a position to discuss an estimation
algorithm for HSMM with missed observations for
each of the six types of observation patterns. We list
in Table 1 important symbols used in this paper. Some
of the symbols are already defined above, but the re-
mainders will be introduced and explained in the sub-
sequent sections.

3. Forward—backward algorithms for HSMM with
missing observations

3.1. Full observation model and related work

The conventional case is that outputs emitted from
the states of a hidden Markov chain are fully observed
with no omission. Each state emits at least one ob-
servable output during its interval. This model has
been well studied and such algorithms as the Viterbi
algorithm [25,9], the Baum—Welch algorithm [3], the
BCJR algorithm [1], and extensions of some of these
algorithms [20] have been developed to estimate the
state sequence and the model parameters. In these
algorithms, the forward and backward variables are
defined (although in the original Viterbi algorithm
only the forward variable is defined). In the Ferguson
algorithm [8], however, the following two forward
variables are defined:

a,(m) = Pr[o}, state m ends at ¢]

D t
=% a(mpu(d) [ bulon) 2)

d=1 i=t—d+1

Table 1

Glossary of symbols

Term Definition

M Number of states in the HSMM.

D The maximum duration of all states.

T The total period of observations.

K Number of distinct values that an observation o,
can take on.

L Number of distinct values that an observation ¢,
can take on.

Am.n Transition probability from state m to state n.

Tn Probability that the initial state is m.

pm(d) Probability that state m lasts d time units.

o? Observation sequence from time a to b.

o Entire observation sequence of {o,}.

bu(k) Conditional probability that o, = k given s; = m.

b Second observation sequence from time a to b.

0 Entire observation sequence of {g;}.

cm(1) Conditional probability that ¢, = [ given s; = m.

54 State sequence from time 1 to ¢.

A . =(A4,B,C,P,r), the complete parameter set
of HSMM.

oy (m) =Pr[of, state m ends at ¢]: Forward variable. See
(2), (6).

o (m, T) Similar to o(m), defined for two observation
sequences with delay 7. See (25).
Pra(m) Forward variable. See (7), (10), (18), (22).
Pra(m,T) Similar to p, ,(m), defined for two observation
sequences with delay 7. See (24).
pi(m) =Pr [o] | state m begins at ¢]: Backward variable.
See (4), (15).

Pi(m, ) Similar to f:(m), defined for two observation
sequences with delay 7.

@1qa(m) Backward variable. See (14), (20), (23).

¢@rqa(m,t)  Similar to ¢, 4(m), defined for two observation
sequences with delay 7.

ye(m, 1) =Pr[0, Q,s; = m|t]: Backward variable used to

estimate s; for given two
observation sequences with delay 7. See (30).
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and

o (m) = Pr [0, state m begins at ¢ + 1]

M
=3 ou(m )aw 3)

m'=1

for t =1,2,...,T, with the initial and boundary con-
ditions given by

og(m)=m, form=12,....M

and

oaf(m)=0 forallt<Oand m=1,2,..., M.

Similarly, the following two backward variables are
defined:

B:(m) = Pr[o] | state m begins at ¢]

t+d—1

D
=Y Brampu(d) T] buloi) (4)
d=1

i=t
and

B (m) = Pr [o] |state m ends at ¢ — 1]

M
=D amnBi(m") (5)
m’'=1
fort=T,T —1,...,1, with the initial and boundary
conditions given by
pra(m)y=1 forallm=12,....M

and
fi(m)=0 forallt>T+1land m=1,2,..., M.

As is usually done in the HSMM formulation, we
assume a,,,, =0, forallm=1,2,..., M. This means that
no transition back to the same state can occur. In the
HMM, on the other hand, a,,,, can be non-zero and the
duration at state m is geometrically distributed, i.e.,
pm(d) = a;iz;zl(l = Amm),

From (2) and (4) we can see that the Ferguson al-
gorithm [8] requires a large number of computations
to update the forward and the backward variables at
every t. To be more specific, D(D + 1)/2 multiplica-
tions are required just to compute the sum of product
terms Y4, TT'—, 4+, bm(0:), and if we include other
terms, it amounts to [(D+5)D/2 +M — 1M multipli-
cations. Therefore, the Ferguson algorithm has com-
putational complexity of O(D?) [20,21].

1 <d < o0

The product-and-sum term 25:1 [Te_gi bm(oi)

required in computing (2) and (4) can be calculated
more efficiently than in the original Ferguson’s pro-
cedure by a recursion method, as suggested by Levin-
son [17] and further refined by Mitchell et al. [18]. In
this method, the product-and-sum term can be com-
puted with (3D + M — 1)M multiplications, i.e., on
the order of O(D), but it requires retrieval of the saved
probabilities, b, (o,), obtained in the previous D ob-
servations o,,0;_1,...,0,_p+1, and D recursive steps
to be performed at every ¢. Therefore, a total recursive
steps required of the forward and backward algorithms
increase by factor of D compared with the Ferguson
algorithm.

From (2) and (3), we can see that by storing the
products a, p(d) for all n,m and d in advance,
we can reduce computation by not performing the
multiplication during the forward procedure. Simi-
larly, storing @, pm(d) ahead of time would save
computation in the backward procedure. Some au-
thors [22,24,5,21] combine the duration distribution
pm(d) and the state transition probability a,,, to form
a new quantity a,,(d) = au, pm(d), which represents
the overall probability that the system stays in state
m for d time units and then transits to state n. Alter-
natively, the duration distribution p,(d) can be com-
bined with the observation probability b,(o;) [19].
Obviously, with such combinations the number of pa-
rameters involved would increase significantly. For
example, the number of the above defined a,,,(d)’s
is M2D, while the total number of a,, and pm(d)
is merely M? + MD. It means that these algorithms
would require much more memory. Furthermore, com-
putation to re-estimate these parameters would have
to increase as well. The amount of computations re-
quired and the number of parameters to be estimated
in several known HSMM algorithms [8,17,18,21,11]
and our algorithm (to be discussed in the following
sections) are compared and summarized in Table 2.

The HSMM reduces to an HMM if we set p,,(d)
to be a geometric distribution, as remarked earlier.

3.2. Regular and random observation models

Let us now consider cases where the observations
are made independently of the hidden semi-Markov
process. An example is regular or random sampling, as
defined earlier. Similar to the full observation model,
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Table 2
Comparison of the algorithms

The forward The backward Computation required for Number of
computation required computation required re-estimation of parameters to be
at each time ¢ at each time ¢ parameters estimated
Our algorithm (2D + MM (2D + MM (M? + MD)T M? + MK + MD
Ferguson algorithm [8] (0.5D* + MM (0.5D> + MM (M? + MD)T + 0.5D*M M? + MK + MD
Levinson [17] and 3D+ MM (BD+ MM (M? +2MD)T + M? +2DM  M? + MK + MD
Mitchell et al. [18]
Krishnamurthy et al. [11] and (MD + D)M 2M?*D 3M?*DT M?D + MK +M
Ramesh et al. [21]
we use (2) to define the forward variable o,(m) when M
the output o, is observed, i.e., # € G. If the observa- pro(m) =" o(m Yaym. (12)
tion at time ¢ is missed (i.e., ¢ € G), then we should m—1

re-define the forward variable o,(m) as

o (m) = ZPr [0’1_1,0[ = k, state m ends at ]
k

t—1

D
=> "o (m)pu(d) [ bulo.
d=1

i=t—d+1
t¢G. (6)

We introduce a new forward variable:

pra(m) = o (m) - Pf[oi—dﬂ |S;—d+1 = m]

ford =1,2,...,D, (7
and define
pro(m) = o (m), (&)
where o(m) was defined earlier by (3). We obtain
the following recursive formulae, for r =1,2,...,7,
po,o(m) =mu,  poa(m)=0,

d=1,....D, 1<m<M, )

ptfl,dfl(m)bm(ot)y te Gs
pra(m) =

pt—l,d—l(m)a t gGa
d=1,...,D, (10)
D
w(m) =" pra(m)pu(d), (11)
d=1

Similarly, we define the backward variables and de-
rive the backward recursive formulae. The backward

recursions are defined as follows for t=7,T—1,...,1:
oryrom)=1,  @ry14(m)=0,
d=1,....D, 1<m<M, (13)
Qra(m)
= Prlof "~ |si " = m] - B, g (m)
B { Qir1,d—1(m)by(or), t€G,
Qr1,d—1(m), t¢ G, ’
(14)
D
Bim) =" pu(d)pra(m), (15)
d=1
M
Pro(m) =B (m)=">_ annPi(n). (16)

n=1

Then, the state sequence and the parameters of this
HSMM with regular or random sampling can be es-
timated using these forward and backward recursive
formulae.

From (9) through (16), we can see that updating the
forward variables (or the backward variables) requires
(2D + M — 1)M multiplications at every ¢. The pa-
rameter p; 4(m) and ¢, 4(m), for d > 1, can be treated
as a temporary variable in the forward and backward
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procedures because at every ¢ the value p, 4(m) is de-
termined by its value at the preceding time ¢ — 1, as
suggested by (10). Similarly, ¢, 4(m) depends on its
value at ¢ 4+ 1, as suggested by (14). The computa-
tional logic is easily realized by delay shift units (one
for each observation interval delay).

A remark is in order regarding the computational
procedures. Proper scaling is required in the recur-
sion formulae to re-estimate the HSMM model pa-
rameters [20], because each term in the forward and
backward variables is less than one and starts to de-
cay exponentially towards zero as time index ¢ grows
(e.g., 10 or greater). The purpose of scaling is to
avoid possible underflows or overflows in the compu-
tation. All we need to do is to replace the conditional
probability distribution b,,(o;) used in the forward
and backward formulae by a new quantity defined
by

bu(01) = cibm(0;)
andt=1,...,T, (17)

form=1,...,.M

where ¢, is a suitably chosen scaling factor. The state
estimation equation and the parameter re-estimation
equations that we derive in the next sections will
not be affected by these scaling factors, because both
numerator and denominator of those equations (e.g.,
Egs. (35) through (42)) will factor out the common
term [, ¢

Appropriate values of the scaling factors ¢; can be
determined by requiring, for instance, the sum of the
scaled o terms to be unity, i.c., ZZZI o;(m) =1 and
S pro(m)=1,ateacht, for 1 <¢ < T. Since the
magnitudes of the scaled p, ¢ and f§ terms are compa-
rable, the values of all the parameters remain within
reasonable bounds, thus avoiding possible overflow or
underflow problems.

3.3. State-dependent observation misses

As we defined earlier, the missing pattern of ob-
servations is called “state dependent”, if some obser-
vations are missed because of a particular nature of
the state the system happens to be in. Such “null”
output, denoted ¢, can be considered as an element
in the output set associated with such state. We
re-define the forward variable p,,(m) of (10), for

d>1,as
p[*l,d*l(m)Pr[0l|st :m]7 IEGy
Pra(m) =
pi—1,a—1(m)Pr[¢|s, =m], t &G,
d=>1, (18)

where

K
Pr{¢;|s; =m) + ZPr{o, =kls,=m)y=1. (19)
k=1

Therefore, such case of state-dependent misses can be
treated as a special situation of the full observation
model discussed earlier. The forward recursive formu-
lae (11) and (12) for the variables o,(m) and p; o(m)
still hold in this case. Therefore, we can utilize the
forward formulae (18), (11) and (12) to calculate the
forward variables, where the initial values are given
by (9).

Similarly we re-define the backward variable
@rqa(m) of (14), ford > 1, as

@ri1,d—1(m)Prlos|s, =m], t€G,
Pra(m) =
§0z+1,d—1(m)Pf[¢t|St =m], t¢G,
d>=1. (20)

Then (20), (15) and (16) form the backward recur-
sions with the initial values given by (13). We can
use these forward and backward recursive formu-
lae to estimate the parameters of the HSMM with
state-dependent misses.

3.4. Output-dependent observation misses

When observation misses depend on the outputs,
we define the “output-dependent miss probability” by

e(k) = Pr[o, is missed | o, = k]. 21

We define the forward variable o,(m) by (2) or
(6), depending on whether the output o, is observed
(i.e., t€G) or missed (ie., t € G). We re-define
the forward variable p,s(m) of (10) and (18), for
d>1,as

pt,d(m)
Pr—1,d—1(m)bu(0y), teG,
pi-ta—1(m)y_ bulo,=k)e(k), t¢&G,
k

d>1. (22)



242 S.-Z. Yu, H. Kobayashil Signal Processing 83 (2003) 235-250

Then the forward recursive formulae (11) and (12)
for the variables o,(m) and p, o(m) still hold. The for-
ward formulae (22), (11) and (12) are used to cal-
culate the forward variables, where the initial values
are given by (9). Similarly we re-define the back-
ward variable ¢, ,(m) of (14) and (20), for d > 1,
as

@Pr1,d—1(m)bu(0y), tegq,
P =Y a1 ()Y bu(k)e(k), 1 ¢ G,
k

d>1. (23)

Then (23), (15) and (16) form the backward re-
cursions with the initial values given by (13). The
hidden state sequence and model parameters of the
HSMM with output-dependent misses can be esti-
mated by using these forward and backward recursive
formulae.

4. Estimation of HSMM with multiple observation
sequences

We now discuss a case where multiple sequences
of observations are available. These multiple observa-
tion sequences may have their observation intervals,
starting points, sampling rates, etc. different from
others. In Fig. 1 we show only two observation se-
quences {o,} and {g¢,}. There is a delay T between
the two observation sequences, where 7 takes on a
value from {0, £1,+2,...}. Either of the two streams
can be any type of the observation and missing
patterns discussed in Sections 3.1-3.4. As an exam-
ple, we consider the case where {o,} is subject to
output-dependent misses (as in Section 3.4) and {gq,}
is subject to regular or random sampling (as in Sec-
tion 3.2). We denote the set of their observation time
instants by G, and G, respectively. Let G; = {tte G,
or t + 1€ Gy, given 7} with a minimum value ¢, and
a maximum value 7. Denote by b,,(0;) and ¢,,(gs++)
the conditional probabilities that the observations
are o, and q,.., respectively, when the system is in
state m at time ¢. Similar to (10) and (22), we de-
fine the forward variable p,4(m,7) for given delay

T by
pr.a(m,T)

Pr—1,d—1(m, T)bp(01)Cm(qr+2)s
teG,, t+1€G,,
Pi—1,d—1(m, T)by(0;),
teG,, t+1¢G,,

pr-ta—1(mT)en(qiie) Y bu(k) e(k), (24)
k

t ¢ G, t+1€G,,
prra—1(m,1) Y bu(k)e(k),
k

tZ€ G, t+1¢ G,

for all #; <t < T;. The forward variable o,(m, 1) for
two observation sequences with delay 7 can be simply
defined by

D
0(m,1) =D pra(m ) pu(d), <t <Te (25)
d=1
We also have
M

pt,O(mr T) = Z at(mla T)am’ ms

m’'=1

t<t<T. (26)

with initial conditions similar to (9):
pt[,d(ms T) = 03
1<m<M, (27)

Pro(m, 1) = 1y,
d=1,....D,

where #; is the minimum ¢ in G..

The backward variable ¢, 4(m,t) and f;(m, 1) can
be similarly defined for two observation sequences
with delay 7. Denote the entire observation sequences
by O ={o,:t€G,} and Q ={qg,: t € G, }. By apply-
ing the forward formulae of (24), (25) and (26), we
can obtain the (joint) likelihood function of the two
observation sequences O and Q for given delay 7:

M
Pr{0, Q7] = oz (m,1), (28)
m=1

where T is the maximum ¢ in G,.
The delay 7 between the two observation sequences
can be estimated from the observations, while all
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the model parameters are assumed to be given and
fixed:

M
7 = argmax Pr[O, Q|t] = arg max Z or.(m,1). (29)
T T
m=1
For simplicity of notation in the following sections,
we use G to denote G; for given 7 and assume ¢; =
1 and T; = T without loss of generality. We denote
the subsequences by o2 = {0,: a <t < b, t€ G,} and
qé’i; ={qis:a <t <b t+1€G,}.

4.1. MAP estimate of states

After having obtained all the forward variables for
all ¢ and the estimate of the delay parameter 7, we
can find the maximum a posteriori (MAP) estimate of
state s,, given the observations O, Q and the model
parameters, during the process of computing backward
variables at every ¢. First, we define

y:(m,T) =Pr [0, Q,s, = m|7], (30)

which is the joint conditional probability of the two
sequences O and Q and state s,, given the parameter
of interest, 7, where 7 is determined by (29). Since we
can write

Pr[0, Q,s,+1 = m|7T]
=Pr[0,Q,s, =m and 5,1 = m|7]
+Pr[0, Q,s, # m,m begins at t + 1|7]  (31)
and
Pr[0, Q,s, = m|1]
=Pr[0,Q,s;, =m and 5,1 = m|7]
+Pr[0,Q,m ends at ¢, s, # m|t], (32)
we find the following backward recursion for y,(m,7):
Pe(m, ©) = pr1(m, T) + o(m, T)@ri1,0(m, T)
= pro(m, D)fr1(m, 7), (33)

where we used the following relation based on Bayes’
rule and the property of a first-order Markov chain
that its current state depends on its past only through

the most recent state, i.e.:
Pr [0, Q,m ends at t,5:,1 # m|t]
=Pr[o},q\"% m ends at #|¢]

T+7

t+7
it1+42

T A
xPrlo,,, |01,q1+r,m ends at 7, 7]

= Pr[of, ¢\ %, m ends at ¢|7]

><Pr[0,T+1,qt+1H|m ends at ¢, 7]

= {xt(ma f)(pt+l,0(ma f)
and similarly

Pr[O, Q,s, # m, mbegins at ¢ + 1|7]

= pt,O(ms f)ﬁtle (ma f)
The initial condition for the backward variable y,(m, 7)
is

yr(m, 1) =Pr[0, Q,sr = m|t] = ar(m, 1), (34)

which is obtained at the end of the forward algorithm.
Obviously, we can calculate y,(m, 7),t=T7,T—1,...,1,
in conjunction with the backward algorithm, because
the current value of y,(m, 7) is determined by the pre-
ceding values y;11(m, 1), ¢;11,0(m,T) and f;11(m,T) in
the backward calculation, where o,(m, ) and p, o(m, 7)
are the stored values of the forward variables.
The MAP estimate of state s; is defined as

m|0, Q,1].

S 7arg max Pr(s, =
<M

By Bayes rule, we have

§; = arg lg}”ai(M y:(m, ©)/Pr[O, Q|1]

:arglgnaéMy,(m,r), t=T,T-1,...,1. (35)
From these equations, we can readily obtain the MAP
estimate $;, given the observations O, Q, and the
model parameters.

4.2. Re-estimation of the model parameters

The re-estimation algorithm is to update and im-
prove estimates of the hidden state sequence and the
model parameters, for given observation sequences O
and Q. First, we apply the forward-backward algo-
rithm to obtain an estimate 7 of delay, and then a new
estimate of the model parameters. Each time the model
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parameters are updated, the estimation 7 of delay is
re-estimated, and this interplay between the forward—
backward algorithm and the ML estimation procedure
is repeated until they converge to satisfactory solu-
tions.

A posterior estimate of the transition probability
amy 1s obtained as the expected number of transitions
from states m to n divided by the expected total number
of transitions out of state m [20,8]:

A _ Et O —1 (ma f)am nﬁt(na f)

S 1 (m ) pro(m 9)

forl<m#n<M (36)
and

Anm=0 forall<m<M. (37)

Similarly, a posteriori estimate of the initial state
probability should be given as the expected relative
frequency with which the system is found in state m
attr=1:

- TCMﬁ 1(m> f)

m Zm nmﬂl (m, ‘E) 5
where 7, is, as defined earlier, the initial distribution.
We proceed in a similar manner, and revise the esti-
mate of the state duration probability by the following
expression:

ﬁ (d) — Zt pl—l,o(ms f)pm(d)q)t,d(m’ ‘E)
" E[ pt—l,O(m: f)ﬂt(ma f)

l<m<M, d=1,2,...,D, (39)

1<m<M, (38)

where the numerator represents the expected number
of times that state m lasts exactly for d time units and
the denominator of (39) is the expected total number
of times that state m is visited regardless of any dura-
tion. Note that the denominator is equal to the sum of
the numerators taken over d, ford = 1,2,...,D.

The conditional probability of observing o,=k when
the system is in state m is estimated by the following
expression:

> vi(m, 1)0(0;, — k)
Zt y,(m, f) ’

l<m<M, 1<k<K, (40)

l;m(k) =

where y;(m, ) is given by (33), and

Otzk,

17
a@—kyz{o oAk (41)

Similarly,

Z; 2:(m, ©)0(qr¢ — 1)
Z; yt(ma f) ’

l<m<M, 1<I<L. (42)

ém(l) =

We note that observation {o,;} and {¢;} can be
continuous-valued processes. Then the most general
form of the probability density function (pdf) treated
in the literature is not an arbitrary density function,
but is a finite mixture of log-concave or elliptically
symmetric functions (e.g., Gaussian) to insure that the
parameters of the pdf can be re-estimated in a consis-
tent way [20]. Therefore, in the continuous case, the
re-estimation procedure of our HSMM can be simi-
larly formulated as the continuous HMM [20].

From the re-estimation formulae (36) to (42), it
can be seen that the re-estimation procedures can be
combined with the backward algorithm, because they
are the cumulative sums of the products of several
variables for t =7,T7 — 1,..., 1. During the backward
recursion, we obtain the backward variables f,(m, 7),
@ra(m, ) and y,(m,7), for t =7,7 — 1,...,1. Mul-
tiplying them with the stored values of the forward
variables p;_10(m,7) and o,_1(m,7) at each ¢, and
accumulating the products from ¢ = T through 1, we
obtain the re-estimated parameters dmn,ém(k), (D)
and p,(d), where d = 1,...,D, k = 1,...,K,
I=1,...,L,and n,m=1,...,M. The backward vari-
ables f,(m, 1), ¢, 4(m,T) and y,(m,T) can be viewed,
therefore, as the “interim results” in this re-estimation
procedure.

Using the theory associated with the well-known
EM (expectation/maximization) algorithm [4], we can
prove that the re-estimation procedure in our extended
algorithm also increases the likelihood function of the
model parameters. In other words, the re-estimation
procedure leads to maximum likelihood estimates of
these model parameters. Let A represent the complete
set of the model parameters to be estimated in the
re-estimation procedure:

;b:(A,B,C,P,n), (43)

where A=[a,'m]1s s 1 the state transition probability
matrix; B = [b,,(k)]y;xx and C = [c, ()]s the ob-
servation probability matrices; P = [ p,(d)];;«p the
state duration probability matrix; and © = [7, ]/,
the initial state probability vector. The purpose is to
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find maximum likelihood estimates of the model pa-
rameter set A and the delay parameter 7, i.e., to find A
and 7 such that the likelihood function Pr[0O, Q|4,1]
is maximized for given O and Q. Let

VN =(A,B,C',P 1) (44)

be another possible set of the model parameters and
7’ another delay parameter.

First we apply (29) to maximize the likeli-
hood function Pr[0, Q|/,1] for fixed A. We have
Pr[0, Q|/,7] = P[0, Q|4,7] for all 7. Hence, we let
7/ = 7. Then we use the forward—backward algorithm
and the re-estimation formulae (36) to (42) for given
/A and 7T to estimate parameters d, ., Em(k),ém(l),
Pm(d) and 7,,. We show that these re-estimated pa-
rameters can also increase the likelihood function.

Following the discussion given in [8], an auxiliary
function is defined as

o4, 1)
=Y Pr[s{,0.0/4.%]InPr[s],0,0|1.%] (45)

For fixed A, if we can find any A’ such that
04,2 > Q(4,A), then it can be shown that
Pr[0, 0|V, ] > Pr[0, Q|A, 1], ie., the likelihood
increases. A key step in applying this result to our
algorithm that involves two observation sequences
with missing data is to obtain the following identity:
Q(;L’ /“/) B Q(/“’/l)
P[0, 0|2,1]

! /
. T ~ a,.
:E nmln—’”—kg Ayt In 22
T " A’ m
m m',m

m,k

pm(d) bm(k)
Q)
+Z (1) (46)

where a, .., b}, (k),c,, (1), p,(d) and =), are parame-
ters to be found to maximize the auxiliary function of
(46). Note that the set of steps (36) to (42) to deter-
mine G s by(k), ém(1), pm(d) and #,, is equivalent
to the E step in the EM algorithm.

The first three terms in the right hand side of (46)
can be derived by following the discussion given in

[8]. The last two terms are somewhat different, because
of the two observation sequences with missing data.
That is, we can show

| ) y
Pr[0, 0|/, 7] ZPr[sl ,0,0|4,7]

¢l

le Pr[ob q[<‘v"f|sl9/'1 ‘[’-]

Pr 01‘7 qt+‘t|sl‘7 }, I]

teG
_ Pr[ sl,O 0|4, 1] Pr(k, l|m, 2, 1]
_; Pr[0, Q|/, 1] ;Zk:l Pr[k, [|m, }, 1]

1

x0(s; —m)o(o; — k)o(qrvs — 1)

B Pr[k, {|m, ', ] PrisT, 0, 0|2, 7]
_len Prlk, i|m, 7, 7] ZZ Pr[0, 0|/, 7]
XO(s; — m)(s(Ot —k)o(qi:—1)

()
l b

(47)

m
m,k b (k)
where G is the set that excludes the missed obser-
vation intervals, and the observations o, and ¢, ; for
given state s, and 7 are assumed independent, i.e.,
Pr [0/, q1+¢[s] = Pr [o0]s,]Pr [g11¢]s,]. By now, we can
implement the M step of the EM algorithm, i.e., it can
be proved that when we choose the re-estimated values
of @y, =G’ by, (k) =byu(k), c3,(1)=En(1), pp,(d)=
Ppm(d) and ), = &, then (46) is maximized.

5. Applications to mobility tracking in wireless
networks

Location-based wireless services have become an
active area of research in recent years [10]. These en-
visioned applications include navigation, emergency
services, location specific advertising, location sensi-
tive billing, local information, etc. Mobility of users
presents significant technical challenges for us to pro-
vide efficient wireless access to the Internet. For a
given individual mobile user, his/her location, velo-
city and direction will vary in time. It is therefore
important to take into account dynamic mobile behav-
ior in provisioning wireless Internet services.

We define the state of a mobile user in terms of
a vector (xi,...,x,), where the ith component, x;,
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represents a value from a finite attribute space A;.
The attribute spaces represent properties of the mo-
bile user such as its location, moving direction, speed,
etc. The set of possible states for a mobile user is an
n-dimensional vector space given by

S=A; X - x Ay, (48)

where x denotes the Cartesian product. The dynamic
motion of a user, as defined by its time-varying at-
tribute values, can then be described by its trajectory
in this space.

We enumerate all possible states in S and label them
as 1,...,M such that the state space S can simply be
represented as S ={1,..., M }. The state transitions of
a user are characterized by a Markov chain with tran-
sition probability matrix A4 = [a,/,: m',m € S]. We
note, however, that transitions among the states is lim-
ited due to constraints of street layout and we may as-
sume that from a given state transitions can occur to
on the order of ten neighboring states. Such consider-
ations imply that the transition probability matrix will
be highly sparse in practical applications.

We assume that the mobile user dwell time in
a given state is a random variable taking values
from the set {l,...,D}, with a general probabil-
ity distribution p,,(d) and the corresponding matrix
P=[p,d):meS,d=1,...,D].

Our mobility model differs from previously pro-
posed mobility models [23,16] in that it leads to a sim-
ple parametric representation of the mobile behavior
that can be related to a general queuing network with
multi-class users in which each service center consists
of infinite server (IS) stations of multiple types. This
representation allows us to capitalize on recent results
in queuing and loss network theory [12]. This result
in turn implies that to obtain the state distribution of
mobile users, we need only two sets of parameters:
the mean dwell time, d,,, in state m and the expected
number of visits, e,, which a user makes to state m
in its “lifetime” (i.e., from the moment that it enters
the system as an active user until it leaves the system
by either moving out from the region or by turning its
power off). Thus, only 2M pieces of numeric data per
user class provide sufficient statistics of the user mo-
bility, as far as the steady-state distribution and related
performance measures are concerned.

In order to keep track of the user mobility, the
semi-Markov model parameters must be estimated

Geolocation

P observation —w o~k with probability b,,(k)

Oy

Hidden Ton

user state Ayt

St Pn(d)

Requirement
observation _ﬂ g~I with probability c,()

a

Fig. 3. The hidden semi-Markov process s; and its geo-location
and requirement observation processes (0r, ¢ ).

based on observations of the user states. This leads to
an application of the type of HSMM discussed in the
preceding sections. Let o, denote the observed loca-
tion of the user at time ¢. Note that the location of a
given user is merely a portion (i.e., sub coordinates)
of the state vector (xi,...,x,). The observation value
o, differs, however, from value that would corre-
spond to the user’s true location, due to geo-location
error. We denote the observation probability matrix
as B =[b,(k): meS,k=1,...,K], where b,,(k) is
the conditional probability that the geo-location value
observed at time ¢ is o, =k, given that the user state is
s; =m. For simplicity, we assume that this probability
distribution is time invariant.

In parallel with the (geo-location) observation pro-
cess o, defined above we now introduce the following
“user requirement process” ¢,, which takes on values
0,1,...,L, where q; = [ means that the user requests
object / (e.g. web content /). We assign / =0 to a
“null” object, i.e. the situation in which the user makes
no request. The object / that the user requires gener-
ally depends on the user state m. Therefore, we de-
fine the user requirement probability matrix by C =
[em(]):meS, [=0,1,...,L], where ¢,,(/) is the condi-
tional probability that ¢, =1 given s,=m. We again, for
simplicity, assume time invariance of this probability
distribution. Fig. 3 summarizes our geo-location ob-
servation and user requirement processes (o, ¢; ), both
of which are probabilistic functions of the underlying
hidden semi-Markov process s;.

The user state process s, is characterized by 4, P
and the initial state probability vector . Thus, the
following five-tuple 4 = (A4,B,C,P,n) specifies
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Fig. 4. Dynamic mobility tracking model.

our mobility and traffic model built on the discrete

HSMM.

In this formulation, estimation of the state process
s, and re-estimation of the mobility model parame-
ters A = (A, B, C,P,n) are made based on the pair
processes (o,,q,). For various reasons, geo-location
measurement and/or transmission of geo-location data
may not take place frequently enough to allow pre-
cise tracking of the user’s state all the time. The user
may not necessarily send content requests when the
user is in some state. Furthermore, the starting time of
the geo-location observation sequence may not be the
same as that of the requirement observation sequence
and the two sequences may have different sampling
instants. Therefore, the estimation and re-estimation
algorithms discussed in the previous sections in han-
dling missing observations and multiple observation
sequences will be applicable to our model.

To keep track of the state of a mobile user, we apply
our forward-backward and re-estimation algorithms
for HSMM. The main steps in our tracking algorithm
are summarized as follows:

1. Apply the HSMM re-estimation algorithm to ob-
tain the initial estimates A = (/i, B,C,P, 7t) of the
mobility model parameters by using training data.

2. Apply the HSMM forward-backward estima-
tion algorithm to estimate the current state s, of
the mobile user and to predict at time ¢ the next
requirement, §,,, of the mobile user, based on
both geo-location and requirement observation
sequences o} and ql

3. Refine the estimates A= (A B,C,P, 1) by applying
the HSMM re-estimation algorithm to the given
observation sequences.

Fig. 4 illustrates this dynamic mobility tracking
model. The state sequence s} associated with a mo-
bile user is hidden in the sense that it is not directly

observable. The observation sequence o} is obtained
from geo-location measurement. The request se-
quence ¢ is obtained at a proxy server that is con-
nected between the Internet and the wireless network.
The two observation sequences o and ¢} are the in-
puts to the HSMM algorithm for joint prediction and
re-estimation. The HSMM parameter estimation al-
gorithm produces an estimate, §,, of the current state
of the user. In addition, a prediction, ¢, , of the next
requirement of the user is produced as an output of
the predicted value $,,;. That is,
min(#,D)

Gr+1 =argmlaxz [ > pralm)
m d=0
d
x (1 -> pm(dl)ﬂ en(D), (49)

di=1

where the term in square brackets represents the con-
ditional probability Pr [SH—I =m ol,q1 |A]. Finally, it
produces estimates, h= (A B,C,P, 7), of the model
parameters. Based on the prediction and re-estimation,
the system can, for instance, “prefetch” or “push” the
most relevant contents to the mobile user. Thus, the
mobility model can be used to enhance the perfor-
mance of prefetch caching algorithms [14,13] and to
characterize the wireless Internet access traffic. Such
characterization can be utilized to optimize resource
allocation and control policies. The reader may won-
der whether one can develop dynamic mobility track-
ing using an “online” version of estimation algorithms
for the HMM [7]. The main difficulty in such attempt
would be that our model deals with HMM with explicit
duration treatment, which leads to complex forward—
backward and re-estimation formulae when the total
length of the observation sequences is increased.

6. Simulation results

Our models and algorithms are proposed for poten-
tial applications to, for instance, “location-dependent
services” that will be offered in next generation wire-
less Internet environments. Thus, at this point there are
no really relevant empirical data that can be used to
validate our models and algorithms. What we can pro-
vide in this limited circumstance is to illustrate usage
of our mobility tracking model and related algorithms
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Fig. 5. An example of mobility.

by conducting Monte-Carlo simulation experiments.
In such simulations, “observation” sequences in fact
need to be artificially generated by assuming some un-
derlying probabilistic models. Such questions as “what
distributions should be assumed”, and “whether or not
some dependency or correlation should exist tempo-
rally and/or spatially” fall in the domain of what we
often call “traffic or workload characterization”, which
by itself is a difficult yet important research problem.
We hope that our work will motivate other researchers
and practitioners engaged in this field to tackle such
workload characterization issues.

We first specify appropriate mobile states by tak-
ing into account various constraints due to the street
layout. We assume that in a serving area (of 1.6 by
1.6 km) there are 128 street segments in a mesh lay-
out. Each street segment is about 200 m long. In re-
ferring to the state space defined by (48), we set here
n=2,1.e. (x;,x3) €S, where the first attribute x; € 4;
represents the street segment, hence |4;| = 256. The
second attribute x, € A, takes one of the following
five possible values, i.e., two possible directions of
the user who may be walking along the given street
segment; two possible directions if he/she is driv-
ing; and no significant motion. The last value of the
attribute x, represents a situation where the mobile
user is standing still or shopping in the area. Thus, in
this simple state definition, the total number of states
is |S] = |41] x |42] = 128 x 5 =640. A user in a
given state makes a transition to one of approximately
ten other states associated with the neighboring street

Observation

(location)

61 Estimation

0 2 4 6 8 10 12 14 16 18
(location)

Fig. 6. Geo-location observation and state estimation.

segments. In other words, the state transition probabil-
ity matrix A is largely determined by the street layout,
and is very sparse.

To generate the observation sequences in the simu-
lation, we first generate the mobile state sequence of
a mobile user. An example of 1-trajectory of a mobile
user is shown in Fig. 5.

In Fig. 6, we plot a set of geo-location observations:
we made one observation every 20 s, and 180 mea-
surements in an hour. Note that some of observed data
are quite far from the user’s true location, due to error
or noise introduced in the geo-location process. We
generate the observation sequence of requests made
by the mobile user, by assuming some of the requests
are location dependent (i.e., state dependent here).
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Fig. 7. State estimate errors with missing observations.

After having generated both the geo-location and
requirement observation sequences, we can now start
applying our forward—backward and re-estimation al-
gorithms to estimate the model parameters and the
mobile state sequence. For the two given observa-
tion sequences with the total number 7" = 180 and the
total observation interval = 3600 s, the estimated state
sequence §7 is shown in Fig. 6 in “circle” marks.

To evaluate the algorithm, we compare the esti-
mated state sequence with the true state sequence. It
shows that the state estimated from the geo-location
sequence ol alone is 92.22% accurate (i.e., 166 out of
T = 180 samples). Out of the erroneously estimated
states (7.78% or 14 out of 7=180 samples), estimation
of x; (i.e., user location) was still correct for 6.67%
(i.e., 12 samples) and only estimation of x, (i.e., mov-
ing direction and velocity) was made incorrect. In the
1.11% (i.e., 2 out of 180 samples) both x| and x, were
misestimated (occurred only in the beginning of the
sequence). The state estimation based on the request
sequence ¢! alone is 96.11% accurate (i.e., 173 out
of 180 samples). The state estimation using both the
geo-location sequence o! and the request sequence g7
achieved accuracy as high as 97.22% (i.e., 175 out of
180 samples).

State estimation errors obtained from geo-location
data with regular and random observation are shown in
Fig. 7 in a broken line and a solid line, respectively, as
functions of percentage of missed observations, where
the full sampling rate is % s. From Fig. 7 we can see

that the state estimation errors do not increase signi-
ficantly with the increase in the missing ratio. This
result indicates that base stations in a wireless network
may not need to perform geo-location regularly or fre-
quently in order to keep track of mobile users. This
will possibly lead to an improvement in wireless net-
work performance by reducing the power interference
caused by geo-location implementation.

7. Conclusions

The underlying assumption in the existing HMM
and HSMM models is that there is at least one obser-
vation produced per state visit and that observations
are exactly the outputs (or “emissions’) of states. In
some applications, these assumptions are too restric-
tive. We extended the ordinary HMM and HSMM
to the model with missing data and multiple obser-
vation sequences. We discussed the possible miss-
ing observation patterns and developed corresponding
estimation algorithms. Our algorithm for the general
HSMM achieves simplicity in computation and re-
duction in memory usage. The forward and backward
algorithms involve the same computational structures
and therefore can be implemented in identical hard-
ware or programming module, in synchronism with
the observed data stream, hence it can achieve high
signal processing speed. The state estimation and pa-
rameter re-estimation algorithms are combined with
the backward procedure, without the need for storing
the backward variables, whereby reducing both com-
putation time and storage space requirements.

We also proved that our estimation algorithm with
missing observations leads to the maximum likeli-
hood estimate. Finally, we discussed an application
of HSMM with missing observations and two obser-
vation sequences to mobility tracking for providing
wireless Internet services to mobile users, and have
shown by simulation experiments that our algorithms
indeed produce encouraging results.
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